A Novel Platform for Cancer Vaccines: Antigen-Selective Delivery to Splenic Marginal Zone B Cells via Repeated Injections of PEGylated Liposomes
Author(s) -
Taro Shimizu,
Amr S. Abu Lila,
Yoshino Kawaguchi,
Yuna Shimazaki,
Yuki Watanabe,
Yu Mima,
Yosuke Hashimoto,
Keiichiro Okuhira,
Gert Storm,
Yu Ishima,
Tatsuhiro Ishida
Publication year - 2018
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.1701351
Subject(s) - adjuvant , spleen , ctl* , in vivo , liposome , immunization , medicine , immune system , antigen , immunology , pharmacology , chemistry , biology , cd8 , biochemistry , microbiology and biotechnology
Treating cancer with vaccines has been a challenge. In this study, we introduce a novel Ag delivery platform for cancer vaccines that delivers an encapsulated Ag to splenic marginal zone B (MZ-B) cells via the aid of a PEGylated liposome (PL) system. Splenic MZ-B cells have recently attracted interest as alternative APCs. In mice, preimmunization with empty (no Ag encapsulation) PLs triggered the efficient delivery of a subsequent dose of Ag-containing PLs, injected 3 d later, to the spleen compared with a single dose of Ag-containing PLs. In addition, immunization with empty PLs allowed three subsequent sequential injections of OVA-PLs to efficiently induce a CTL response against OVA-expressing murine thymoma (EG7-OVA) cells and resulted in in vivo growth inhibition of subsequently inoculated EG7-OVA cells. However, these sequential treatments require repeated immunizations to achieve their antitumor effect. Therefore, to improve the antitumor effect of our novel vaccine system, an adjuvant, α-galactosylceramide (αGC), was incorporated into the OVA-PLs (αGC/OVA-PLs). As expected, the incorporation of αGC reduced the required number of immunizations with OVA-PLs to the point that a single immunization treatment with empty PLs and an injection of αGC/OVA-PL efficiently triggered a potent CTL induction, resulting in a rejection of the development and a suppression of the growth of tumors that had already developed s.c. Results of this study indicate that a novel Ag delivery platform that grants efficient Ag delivery to splenic MZ-B cells shows promise as a therapeutic modality for conquering tumor growth and/or progression.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom