Foxo3 Promotes Apoptosis of B Cell Receptor–Stimulated Immature B Cells, Thus Limiting the Window for Receptor Editing
Author(s) -
Kristina Ottens,
Rochelle M. Hinman,
Evan L. Barrios,
Brian Skaug,
Laurie S. Davis,
QuanZhen Li,
Diego H. Castrillón,
Anne B. Satterthwaite
Publication year - 2018
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.1701070
Subject(s) - biology , foxo3 , b cell receptor , apoptosis , b cell , receptor , immunology , microbiology and biotechnology , clonal deletion , autoantibody , cancer research , antibody , t cell , signal transduction , t cell receptor , protein kinase b , immune system , genetics
Central tolerance checkpoints are critical for the elimination of autoreactive B cells and the prevention of autoimmunity. When autoreactive B cells encounter their Ag at the immature B cell stage, BCR cross-linking induces receptor editing, followed by apoptosis if edited cells remain autoreactive. Although the transcription factor Foxo1 is known to promote receptor editing, the role of the related factor Foxo3 in central B cell tolerance is poorly understood. We find that BCR-stimulated immature B cells from Foxo3-deficient mice demonstrate reduced apoptosis compared with wild type cells. Despite this, Foxo3 -/- mice do not develop increased autoantibodies. This suggests that the increased survival of Foxo3 -/- immature B cells allows additional rounds of receptor editing, resulting in more cells "redeeming" themselves by becoming nonautoreactive. Indeed, increased Igλ usage and increased recombining sequence recombination among Igλ-expressing cells were observed in Foxo3 -/- mice, indicative of increased receptor editing. We also observed that deletion of high-affinity autoreactive cells was intact in the absence of Foxo3 in the anti-hen egg lysozyme (HEL)/membrane-bound HEL model. However, Foxo3 levels in B cells from systemic lupus erythematosus (SLE) patients were inversely correlated with disease activity and reduced in patients with elevated anti-dsDNA Abs. Although this is likely due in part to increased B cell activation in these SLE patients, it is also possible that low-affinity B cells that remain autoreactive after editing may survive inappropriately in the absence of Foxo3 and become activated to secrete autoantibodies in the context of other SLE-associated defects.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom