z-logo
open-access-imgOpen Access
A Systems Vaccinology Approach Reveals Temporal Transcriptomic Changes of Immune Responses to the Yellow Fever 17D Vaccine
Author(s) -
Jue Hou,
Shuhui Wang,
Manxue Jia,
Dan Li,
Ying Liu,
Zhengpeng Li,
Zhu Hong,
Huifang Xu,
Meiping Sun,
Lu Li,
Zhinan Zhou,
Hong Peng,
Qicheng Zhang,
Shihong Fu,
Guodong Liang,
Lena Yao,
Xuesong Yu,
Lindsay N. Carpp,
Yunda Huang,
M. Juliana McElrath,
Steve Self,
Yiming Shao
Publication year - 2017
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.1700083
Subject(s) - immune system , yellow fever vaccine , virology , transcriptome , biology , yellow fever , immunology , computational biology , gene expression , genetics , virus , gene
In this study, we used a systems vaccinology approach to identify temporal changes in immune response signatures to the yellow fever (YF)-17D vaccine, with the aim of comprehensively characterizing immune responses associated with protective immunity. We conducted a cohort study in which 21 healthy subjects in China were administered one dose of the YF-17D vaccine; PBMCs were collected at 0 h and then at 4 h and days 1, 2, 3, 5, 7, 14, 28, 84, and 168 postvaccination, and analyzed by transcriptional profiling and immunological assays. At 4 h postvaccination, genes associated with innate cell differentiation and cytokine pathways were dramatically downregulated, whereas receptor genes were upregulated, compared with their baseline levels at 0 h. Immune response pathways were primarily upregulated on days 5 and 7, accompanied by the upregulation of the transcriptional factors JUP, STAT1, and EIF2AK2. We also observed robust activation of innate immunity within 2 d postvaccination and a durable adaptive response, as assessed by transcriptional profiling. Coexpression network analysis indicated that lysosome activity and lymphocyte proliferation were associated with dendritic cell (DC) and CD4 + T cell responses; FGL2, NFAM1, CCR1, and TNFSF13B were involved in these associations. Moreover, individuals who were baseline-seropositive for Abs against another flavivirus exhibited significantly impaired DC, NK cell, and T cell function in response to YF-17D vaccination. Overall, our findings indicate that YF-17D vaccination induces a prompt innate immune response and DC activation, a robust Ag-specific T cell response, and a persistent B cell/memory B cell response.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom