The Initiation of B Cell Clonal Expansion Occurs Independently of Pre-B Cell Receptor Formation
Author(s) -
Gregory H. Kline,
Tracy A. Hayden,
Patricia Riegert
Publication year - 2001
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.167.9.5136
Subject(s) - population , biology , cell , cell division , b cell , cell cycle , microbiology and biotechnology , gene rearrangement , gene , genetics , antibody , demography , sociology
Current models of B cell development posit that clonal expansion occurs as a direct result of Ig H chain expression. To test this hypothesis, we isolated a population of early B cells in which H chain recombination is initiated and assessed V(H)DJ(H) rearrangements in both cycling and noncycling cells. We found that actively dividing cells within this population are enriched for H chain rearrangements that are productive when compared with their counterparts in G(0)/G(1), apparently supporting a role for H chain expression in initiating early B cell division; entrance into the cell cycle was accompanied by V(H) gene-dependent H chain selection. However, we also identified a phenotypically identical population of actively cycling early B cells in the absence of H chain expression in recombination activating gene knockout mice. In addition, actively cycling early B cells could be detected in pre-B cell receptor (pBCR)-negative lambda5 knockout mice, but we found no evidence for V(H)-dependent H chain selection in this population. Given these results, we suggest that the initiation of clonal expansion, at this early stage in B cell development, occurs independently of H chain expression. Although the cycling cell pool is enriched for pBCR-positive cells in mice expressing surrogate L chain, pBCR formation is not required for the initiation of cell division.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom