
Abnormal Migration Phenotype of Mitogen-Activated Protein Kinase-Activated Protein Kinase 2−/− Neutrophils in Zigmond Chambers Containing Formyl-Methionyl-Leucyl-Phenylalanine Gradients
Author(s) -
Michael Hannigan,
Lijun Zhan,
Youxi Ai,
Alexey Kotlyarov,
Matthias Gaestel,
ChiKuang Huang
Publication year - 2001
Publication title -
the journal of immunology/the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.167.7.3953
Subject(s) - protein kinase a , kinase , microbiology and biotechnology , mitogen activated protein kinase 3 , p38 mitogen activated protein kinases , phosphorylation , chemistry , intracellular , biology
Time-lapsed video microscopy and confocal imaging were used to study the migration of wild-type (WT) and mitogen-activated protein kinase-activated protein kinase 2 (MK2-/-) mouse neutrophils in Zigmond chambers containing fMLP gradients. Confocal images of polarized WT neutrophils showed an intracellular gradient of phospho-MK2 from the anterior to the posterior region of the neutrophils. Compared with WT neutrophils, MK2-/- neutrophils showed a partial loss of directionality but higher migration speed. Immunoblotting experiments showed a lower protein level of p38 mitogen-activated protein kinase and a loss of fMLP-induced extracellular signal-related kinase phosphorylation in MK2-/- neutrophils. These results suggest that MK2 plays an important role in the regulation of neutrophil migration and may also affect other signaling molecules.