Somatic Hypermutation and Selection of B Cells in Thymic Germinal Centers Responding to Acetylcholine Receptor in Myasthenia Gravis
Author(s) -
Gary P. Sims,
Hiroyuki Shiono,
Nick Willcox,
David I. Stott
Publication year - 2001
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.167.4.1935
Subject(s) - somatic hypermutation , germinal center , myasthenia gravis , biology , acetylcholine receptor , clone (java method) , affinity maturation , autoantibody , immunology , population , somatic cell , neuromuscular junction , b cell , microbiology and biotechnology , genetics , antibody , receptor , gene , medicine , environmental health , neuroscience
The muscle weakness in myasthenia gravis (MG) is mediated by autoantibodies against the nicotinic acetylcholine receptor (AChR) at the neuromuscular junction. Production of these pathogenic autoantibodies is believed to be associated with germinal centers (GC) and anti-AChR-secreting plasma cells in the hyperplastic thymus of patients with early onset MG (EOMG). Here, we describe the repertoire of rearranged heavy chain V genes and their clonal origins in GC from a typical EOMG patient. Three hundred fifteen rearranged Ig V(H) genes were amplified, cloned, and sequenced from sections of four thymic GC containing AChR-specific B cells. We found that thymic GC contain a remarkably heterogeneous population of B cells. Both naive and circulating memory B cells undergo Ag-driven clonal proliferation, somatic hypermutation, and selection. Numerous B cell clones were present, with no individual clone dominating the response. Comparisons of B cell clonal sequences from different GC and known anti-AChR Abs from other patients showed convergent mutations in the complementarity determining regions. These results are consistent with AChR driving an ongoing GC response in the thymus of EOMG patients. This is the first detailed analysis of B cell clones in human GC responding to a defined protein Ag, and the response we observed may reflect the effects of chronic stimulation by autoantigen.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom