Development and Maintenance of a B220− Memory B Cell Compartment
Author(s) -
David J. Driver,
Louise J. McHeyzerWilliams,
Melinda Cool,
Daniel B. Stetson,
Michael G. McHeyzerWilliams
Publication year - 2001
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.167.3.1393
Subject(s) - germinal center , memory b cell , spleen , b cell , biology , naive b cell , immunology , compartment (ship) , microbiology and biotechnology , b 1 cell , immune system , t cell , antibody , antigen presenting cell , oceanography , geology
We have recently demonstrated that a novel somatically mutated B220(-) memory B cell subset rapidly dominates the secondary immune response to (4-hydroxy-3-nitrophenyl) acetyl (NP). Upon adoptive transfer with Ag, B220(+)NP(+) memory B cells produce large numbers of B220(-)NP(+) B cells that can rapidly differentiate into plasma cells. Therefore, it is not clear whether the novel B220(-) memory compartment is a consequence of secondary Ag challenge or whether it develops as a stable memory subset after initial Ag challenge. In this study, we demonstrate the gradual emergence of B220(-)NP(+) B cells in the spleen to maximal numbers 3 wk after initial Ag exposure. Like their B220(+) counterparts, the B220(-) B cells initially appear unmutated at days 5-7; however, the majority rapidly accumulate affinity increasing mutations by days 9-14 of the primary immune response. More extensive cell surface phenotype (GL7(-)BLA-1(-)CD24(-)CD43(+)) argues strongly against germinal center localization and direct analysis in situ places a cohort of B220(-)CD11b(+)NP(+) B cells in the red pulp of the spleen and not in the MZs. These data provide direct evidence for the development of B220(-) memory B cells as a unique cellular consequence of primary Ag exposure. The cellular dynamics and molecular attributes of these unique memory B cells suggest they are distinct cellular products of the germinal center reaction in the primary response and are maintained long-term in the spleen and bone marrow.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom