A T Cell Clone’s Avidity Is a Function of Its Activation State
Author(s) -
Maike D. Hesse,
Alexey Y. Karulin,
Bernhard O. Boehm,
Paul Lehmann,
Magdalena TaryLehmann
Publication year - 2001
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.167.3.1353
Subject(s) - elispot , clone (java method) , cytokine , avidity , t cell , population , immunology , biology , t cell receptor , microbiology and biotechnology , antigen , medicine , immune system , biochemistry , gene , environmental health
At present it is unclear how Ag dose-dependent T cell functions, such as cytokine production, reflect TCR affinity and how the signal strength afforded by the Ag dose affects the kinetics of cytokine production by the individual T cell. We used a computer-assisted ELISPOT approach to address these issues. IFN-gamma release by a clonal population of CD4 T cells was monitored on a clonal population of APC while titrating the nominal peptide. The frequency of cytokine-producing cells, the net per-cell output of cytokine, and the onset of cytokine production were each found to be functions of the signal strength. Sigmoidal dose-response curves were seen at the clonal population level, but the activation thresholds for the individual T cells followed a Gaussian distribution. Moreover, the overall dose-response curve of the T cell clone revealed cyclic changes, becoming increasingly shifted toward lower Ag concentrations with the duration of time that elapsed since the last restimulation with Ag. Therefore, responsiveness to Ag ("functional avidity") is not a constant parameter of a T cell clone but a function of the T cell's history of last Ag encounter. The implications of such shifting activation thresholds are discussed for autoimmune disease.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom