Induction of Apoptosis in Human T Cells by Actinobacillus actinomycetemcomitans Cytolethal Distending Toxin Is a Consequence of G2 Arrest of the Cell Cycle
Author(s) -
Bruce J. Shenker,
Roselle H. Hoffmaster,
Ali Zekavat,
Noboru Yamaguchi,
Edward T. Lally,
Donald R. Demuth
Publication year - 2001
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.167.1.435
Subject(s) - cytolethal distending toxin , apoptosis , dna fragmentation , biology , microbiology and biotechnology , jurkat cells , cell cycle checkpoint , programmed cell death , cell cycle , gene , t cell , escherichia coli , immunology , biochemistry , immune system
We have previously shown that Actinobacillus actinomycetemcomitans produces an immunosuppressive factor that is encoded by the cdtB gene, which is homologous to a family of cytolethal distending toxins (Cdt) expressed by several Gram-negative bacteria. Moreover, we have shown that CdtB impairs lymphocyte function by inducing G(2) arrest of the cell cycle. We now report that both CdtB as well as an extract prepared from an Escherichia coli strain that expresses all three of the A. actinomycetemcomitans cdt genes (rCdtABC) induce apoptosis. Pretreatment of lymphocytes with either CdtB or rCdtABC leads to DNA fragmentation in activated lymphocytes at 72 and 96 h. No DNA fragmentation was induced in nonactivated cells. Flow cytometric analysis of the Cdt-treated lymphocytes demonstrates a reduction in cell size and an increase in nuclear condensation. Mitochondrial function was also perturbed in cells pretreated with either CdtB or rCdtABC. An increase in the expression of the mitochondria Ag, Apo 2.7, was observed along with evidence of the development of a mitochondrial permeability transition state; this includes a decrease in the transmembrane potential and elevated generation of reactive oxygen species. Activation of the caspase cascade, which is an important biochemical feature of the apoptotic process, was also observed in Cdt-treated lymphocytes. Overexpression of the bcl-2 gene in the human B lymphoblastoid cell line, JY, led to a decrease in Cdt-induced apoptosis. Interestingly, Bcl-2 overexpression did not block Cdt-induced G(2) arrest. The implications of our results with respect to the immunosuppressive functions of Cdt proteins are discussed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom