Dendritic Cells Recruitment and In Vivo Priming of CD8+ CTL Induced by a Single Topical or Transepithelial Immunization Via the Buccal Mucosa with Measles Virus Nucleoprotein
Author(s) -
Nathalie Etchart,
Pierre-Olivier Desmoulins,
Karine Chemin,
Charles R. Maliszewski,
Bertrand Dubois,
Fabian Wild,
Dominique Kaiserlian
Publication year - 2001
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.167.1.384
Subject(s) - ctl* , priming (agriculture) , immunology , biology , adoptive cell transfer , buccal administration , cd8 , in vivo , dendritic cell , virology , immune system , t cell , bioinformatics , botany , germination , microbiology and biotechnology
The buccal mucosa, a prototype of pluristratified mucosal epithelia, contains a network of directly accessible class II(+) epithelial dendritic cells (DC), similar to skin Langerhans cells. We showed that a single buccal immunization with measles virus nucleoprotein (NP), by either topical application onto or intradermal injection in the buccal mucosa, induced in vivo priming of protective class I-restricted specific CD8(+) CTL. Both routes of immunization with NP induced a rapid recruitment of DC into the mucosa, which peaked at 2 h and decreased by 24 h. Treatment of mice with Flt3 ligand resulted in an increased number of DC in the buccal mucosa and enhanced the frequency of IFN-gamma-producing NP-specific effectors and the NP-specific CTL response generated after buccal immunization with NP. Finally, NP-pulsed bone marrow-derived DC induced NP-specific IFN-gamma-producing cells upon adoptive transfer to naive mice. These data demonstrate that a viral protein delivered to DC of the buccal mucosa induces in vivo priming of protective anti-viral CD8(+) CTL.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom