z-logo
open-access-imgOpen Access
Dendritic Cells Recruitment and In Vivo Priming of CD8+ CTL Induced by a Single Topical or Transepithelial Immunization Via the Buccal Mucosa with Measles Virus Nucleoprotein
Author(s) -
Nathalie Etchart,
Pierre-Olivier Desmoulins,
Karine Chemin,
Charles R. Maliszewski,
Bertrand Dubois,
Fabian Wild,
Dominique Kaiserlian
Publication year - 2001
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.167.1.384
Subject(s) - ctl* , priming (agriculture) , immunology , biology , adoptive cell transfer , buccal administration , cd8 , in vivo , dendritic cell , virology , immune system , t cell , bioinformatics , botany , germination , microbiology and biotechnology
The buccal mucosa, a prototype of pluristratified mucosal epithelia, contains a network of directly accessible class II(+) epithelial dendritic cells (DC), similar to skin Langerhans cells. We showed that a single buccal immunization with measles virus nucleoprotein (NP), by either topical application onto or intradermal injection in the buccal mucosa, induced in vivo priming of protective class I-restricted specific CD8(+) CTL. Both routes of immunization with NP induced a rapid recruitment of DC into the mucosa, which peaked at 2 h and decreased by 24 h. Treatment of mice with Flt3 ligand resulted in an increased number of DC in the buccal mucosa and enhanced the frequency of IFN-gamma-producing NP-specific effectors and the NP-specific CTL response generated after buccal immunization with NP. Finally, NP-pulsed bone marrow-derived DC induced NP-specific IFN-gamma-producing cells upon adoptive transfer to naive mice. These data demonstrate that a viral protein delivered to DC of the buccal mucosa induces in vivo priming of protective anti-viral CD8(+) CTL.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom