z-logo
open-access-imgOpen Access
Human Notch-1 Inhibits NF-κB Activity in the Nucleus Through a Direct Interaction Involving a Novel Domain
Author(s) -
Jinhai Wang,
Lesile Shelly,
Lucio Miele,
Robert A. Boykins,
Michael A. Norcross,
Ennan Guan
Publication year - 2001
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.167.1.289
Subject(s) - notch signaling pathway , microbiology and biotechnology , transcription factor , biology , nf κb , p50 , protein subunit , notch proteins , ankyrin repeat , gene , nfkb1 , signal transduction , genetics
Notch participates in diverse cell fate decisions throughout embryonic development and postnatal life. Members of the NF-kappaB/Rel family of transcription factors are involved in the regulation of a variety of genes important for immune function. The biological activity of the NF-kappaB transcription factors is controlled by IkappaB proteins. Our previous work demonstrated that an intracellular, constitutively active form of human Notch-1/translocation-associated Notch homologue-1 (Notch(IC)) functions as an IkappaB molecule with specificity for the NF-kappaB p50 subunit and physically interacts with NF-kappaB in T cells. In the current study, we investigated the roles of different domains of Notch(IC) in the regulation of NF-kappaB-directed gene expression and NF-kappaB DNA binding activity. We found that Notch(IC) localizes to the nucleus and that a region in the N-terminal portion of Notch(IC), not the six ankyrin repeats, is responsible for the inhibitory effects of Notch on NF-kappaB-directed gene expression and NF-kappaB DNA binding activity. The N-terminal portion of Notch(IC) inhibited p50 DNA binding and interacted specifically with p50 subunit, not p65 of NF-kappaB. The interaction between Notch and NF-kappaB indicates that in addition to its role in the development of the immune system, Notch-1 may also have critical functions in the immune response, inflammation, viral infection, and apoptosis through control of NF-kappaB-mediated gene expression.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom