z-logo
open-access-imgOpen Access
The Sushi Domain of Soluble IL-15 Receptor α Is Essential for Binding IL-15 and Inhibiting Inflammatory and Allogenic Responses In Vitro and In Vivo
Author(s) -
Xiaoqing Wei,
Michael Orchardson,
J. Alastair Gracie,
Bernard P. Leung,
Bao-mei Gao,
Hui Guan,
Wanda Niedbała,
Gavin K. Paterson,
Iain B. McInnes,
Foo Y. Liew
Publication year - 2001
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.167.1.277
Subject(s) - interleukin 15 , cytokine , microbiology and biotechnology , proinflammatory cytokine , in vivo , in vitro , biology , chemistry , inflammation , immunology , interleukin , biochemistry , genetics
IL-15 is a pleiotropic cytokine that plays important roles in both innate and adaptive immunity. It is associated with a range of immunopathology, including rheumatoid arthritis and allograft rejection. IL-15 functions through the trimeric IL-15R complex, which consists of a high affinity binding alpha-chain and the common IL-2R beta- and gamma-chains. Characterization of IL-15/IL-15R interactions may facilitate the development of improved IL-15 antagonists for therapeutic interventions. We previously constructed soluble murine IL-15Ralpha (sIL-15Ralpha) by deleting the cytoplasmic and transmembrane domains. To localize the functional domain of IL-15Ralpha, we have now constructed various truncated versions of sIL-15Ralpha. The shortest region retaining IL-15 binding activity is a 65-aa sequence spanning the Sushi domain of IL-15Ralpha. Sushi domains, common motifs in protein-protein interactions, contain four cysteines forming two disulfide bonds in a 1-3 and 2-4 pattern. Amino acid substitution of the first or fourth cysteine in sIL-15Ralpha completely abolished its IL-15 binding activity. This also abrogated the ability of sIL-15Ralpha to neutralize IL-15-induced proinflammatory cytokine production and anti-apoptotic response in vitro. Furthermore, the mutant sIL-15Ralpha lost its ability to inhibit carrageenan-induced local inflammation and allogenic cell-induced T cell proliferation and cytokine production in vivo. Thus, the Sushi domain is critical for the functional activity of sIL-15Ralpha.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom