Protein Kinase C-θ Participates in the Activation of Cyclic AMP-Responsive Element-Binding Protein and Its Subsequent Binding to the −180 Site of the IL-2 Promoter in Normal Human T Lymphocytes
Author(s) -
Elena E. Solomou,
YuangTaung Juang,
George C. Tsokos
Publication year - 2001
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.166.9.5665
Subject(s) - creb , rottlerin , enhancer , microbiology and biotechnology , protein kinase c , reporter gene , binding site , promoter , biology , transcription (linguistics) , transcription factor , cyclic amp response element binding protein , response element , luciferase , transfection , gene expression , chemistry , gene , kinase , biochemistry , linguistics , philosophy
IL-2 gene expression is regulated by the cooperative binding of discrete transcription factors to the IL-2 promoter/enhancer and is predominantly controlled at the transcriptional level. In this study, we show that in normal T cells, the -180 site (-164/-189) of the IL-2 promoter/enhancer is a p-cAMP-responsive element-binding protein (p-CREB) binding site. Following activation of the T cells through various membrane-initiated and membrane-independent pathways, protein kinase C (PKC)-theta phosphorylates CREB, which subsequently binds to the -180 site and associates with the transcriptional coactivator p300. Rottlerin, a specific PKC-theta inhibitor, diminished p-CREB protein levels when normal T cells were treated with it. Rottlerin also prevented the formation of p-CREB/p300 complexes and the DNA-CREB protein binding. Cotransfection of fresh normal T cells with luciferase reporter construct driven by two tandem -180 sites and a PKC-theta construct caused a significant increase in the transcription of the reporter gene, indicating that this site is functional and regulated by PKC-theta. Cotransfection of T cells with a luciferase construct driven by the -575/+57 region of the IL-2 promoter/enhancer and a PKC-theta construct caused a similar increase in the reporter gene transcription, which was significantly limited when two bases within the -180 site were mutated. These findings show that CREB plays a major role in the transcriptional regulation of IL-2 and that a major pathway for the activation of CREB and its subsequent binding to the IL-2 promoter/enhancer in normal T cells is mediated by PKC-theta.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom