z-logo
open-access-imgOpen Access
Mutation of the Hematopoietic Cell Phosphatase (Hcph) Gene Is Associated with Resistance to γ-Irradiation-Induced Apoptosis in Src Homology Protein Tyrosine Phosphatase (SHP)-1-Deficient “Motheaten” Mutant Mice
Author(s) -
HuiChen Hsu,
Leonard D. Shultz,
Xiao Su,
Jian Shi,
PingAr Yang,
Melissa J. Relyea,
HuangGe Zhang,
John D. Mountz
Publication year - 2001
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.166.2.772
Subject(s) - protein tyrosine phosphatase , biology , microbiology and biotechnology , apoptosis , phosphatase , haematopoiesis , cell cycle , phosphorylation , cancer research , stem cell , biochemistry
To determine the role of Src homology protein tyrosine phosphatase (SHP-1) in the ionizing radiation-induced stress response, we analyzed the apoptotic response and cell cycle function in irradiated spleen cells of motheaten (me/me) mice. The defect in me/me mice has been attributed to mutations of the HCPH: gene, which encodes SHP-1. Homozygotes develop severe systemic autoimmune and inflammatory disease, whereas heterozygotes live longer and develop hematopoietic and lymphoid malignance. Spleen cells from C57BL/6 (B6)-me/me and B6-+/+ controls were analyzed after gamma-irradiation from a (137)Cs source. B6-me/me cells were significantly more resistant than B6-+/+ cells to gamma-irradiation-induced apoptosis exhibiting a higher LD(50). The defective apoptosis response of the B6-me/me cells was exhibited by T and B cells and macrophages. Of the Bcl-2 family members analyzed, a significant difference was observed in the transcription of Bax mRNA, which was up-regulated early after irradiation in B6-+/+ cells, but not B6-me/me cells. Analysis of 3,3'-dihexyloxacarbocyanine iodide revealed resistance to the gamma-irradiation-induced mitochondrial transmembrane permeability transition in the B6-me/me cells. The blocking of the cell cycle in the G(0)/G(1) phase characteristic of the irradiated B6-+/+ cells was not observed in the B6-me/me cells. There was decreased phosphorylation of p38 mitogen-activated protein kinase and increased phosphorylation of p53 from spleen cell lysates of irradiated B6-me/me mice compared with wild-type mice. These data suggest that SHP-1 plays an important role in regulation of apoptosis and cell cycle arrest after a gamma-irradiation-induced stress response.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom