Cutting Edge: Lipoxins Rapidly Stimulate Nonphlogistic Phagocytosis of Apoptotic Neutrophils by Monocyte-Derived Macrophages
Author(s) -
Catherine Godson,
Siobhán Mitchell,
Killeen Harvey,
Nicos A. Petasis,
Nancy Hogg,
Hugh R. Brady
Publication year - 2000
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.164.4.1663
Subject(s) - phagocytosis , chemotaxis , inflammation , monocyte , pertussis toxin , microbiology and biotechnology , chemistry , cd18 , leukotriene , leukotriene b4 , biology , biochemistry , signal transduction , receptor , integrin alpha m , immunology , g protein , asthma
Lipoxins (LX) are lipoxygenase-derived eicosanoids generated during inflammation. LX inhibit polymorphonuclear neutrophil (PMN) chemotaxis and adhesion and are putative braking signals for PMN-mediated tissue injury. In this study, we report that LXA4 promotes another important step in the resolution phase of inflammation, namely, phagocytosis of apoptotic PMN by monocyte-derived macrophages (Mphi). LXA4 triggered rapid, concentration-dependent uptake of apoptotic PMN. This bioactivity was shared by stable synthetic LXA4 analogues (picomolar concentrations) but not by other eicosanoids tested. LXA4-triggered phagocytosis did not provoke IL-8 or monocyte chemoattractant protein-1 release. LXA4-induced phagocytosis was attenuated by anti-CD36, alphavbeta3, and CD18 mAbs. LXA4-triggered PMN uptake was inhibited by pertussis toxin and by 8-bromo-cAMP and was mimicked by Rp-cAMP, a protein kinase A inhibitor. LXA4 attenuated PGE2-stimulated protein kinase A activation in Mphi. These results suggest that LXA4 is an endogenous stimulus for PMN clearance during inflammation and provide a novel rationale for using stable synthetic analogues as anti-inflammatory compounds in vivo.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom