z-logo
open-access-imgOpen Access
Ubiquitination of RORγt at Lysine 446 Limits Th17 Differentiation by Controlling Coactivator Recruitment
Author(s) -
Zhiheng He,
Fei Wang,
Jian Ma,
Subha Sen,
Jing Zhang,
Yousang Gwack,
Yu Zhou,
Zuoming Sun
Publication year - 2016
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.1600548
Subject(s) - coactivator , rar related orphan receptor gamma , ubiquitin , nuclear receptor coactivator 1 , cancer research , ubiquitin ligase , orphan receptor , microbiology and biotechnology , sumo protein , transcription factor , chemistry , biology , biochemistry , gene
The transcription factor retinoid acid-related orphan receptor γ t (RORγt) directs the differentiation of Th17 cells. Th17 cells mediate pathological immune responses responsible for autoimmune diseases, including psoriasis and multiple sclerosis. Previous studies focused on RORγt target genes and their function in Th17 differentiation. In this study, we assessed posttranscriptional regulation of RORγt and identified a functional ubiquitination site, K446. Mutation of K446 to arginine to prevent ubiquitination greatly enhanced recruitment of steroid receptor coactivator 1 (SRC1), a coactivator critical for RORγt activity. Correspondingly, the K446 to arginine mutation potentiated Th17 differentiation. We also showed that ubiquitin-specific protease (USP)15 interacted with RORγt, removed ubiquitin from K446, and stimulated RORγt activity by enhancing coactivator SRC1 recruitment. Knockdown of USP15 or expression of inactive USP15 impaired Th17 differentiation, suggesting a positive role for USP15-mediated deubiquitination of RORγt in Th17 differentiation. Therefore, ubiquitination of K446 limits RORγt-mediated Th17 differentiation by inhibiting the recruitment of coactivator SRC1. Our study will inform the development of treatments that target RORγt ubiquitination pathways to limit Th17-mediated autoimmunity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom