Cell-Intrinsic Expression of TLR9 in Autoreactive B Cells Constrains BCR/TLR7-Dependent Responses
Author(s) -
Kerstin Nündel,
Nathaniel M. Green,
Arthur L. Shaffer,
Krishna Moody,
Patricia Busto,
Dan Eilat,
Kensuke Miyake,
Michael A. Oropallo,
Michael P. Cancro,
Ann MarshakRothstein
Publication year - 2015
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.1402425
Subject(s) - tlr9 , tlr7 , biology , immunology , autoimmune disease , systemic lupus erythematosus , microbiology and biotechnology , plasmacytoid dendritic cell , autoantibody , b cell , toll like receptor , immune system , dendritic cell , antibody , innate immune system , disease , gene expression , medicine , gene , genetics , dna methylation
Endosomal TLRs play an important role in systemic autoimmune diseases, such as systemic erythematosus lupus, in which DNA- and RNA-associated autoantigens activate autoreactive B cells through TLR9- and TLR7-dependent pathways. Nevertheless, TLR9-deficient autoimmune-prone mice develop more severe clinical disease, whereas TLR7-deficient and TLR7/9-double deficient autoimmune-prone mice develop less severe disease. To determine whether the regulatory activity of TLR9 is B cell intrinsic, we directly compared the functional properties of autoantigen-activated wild-type, TLR9-deficient, and TLR7-deficient B cells in an experimental system in which proliferation depends on BCR/TLR coengagement. In vitro, TLR9-deficient cells are less dependent on survival factors for a sustained proliferative response than are either wild-type or TLR7-deficient cells. The TLR9-deficient cells also preferentially differentiate toward the plasma cell lineage, as indicated by expression of CD138, sustained expression of IRF4, and other molecular markers of plasma cells. In vivo, autoantigen-activated TLR9-deficient cells give rise to greater numbers of autoantibody-producing cells. Our results identify distinct roles for TLR7 and TLR9 in the differentiation of autoreactive B cells that explain the capacity of TLR9 to limit, as well as TLR7 to promote, the clinical features of systemic erythematosus lupus.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom