z-logo
open-access-imgOpen Access
Blockade of TGF-β Signaling Greatly Enhances the Efficacy of TCR Gene Therapy of Cancer
Author(s) -
Gavin Bendle,
Carsten Linnemann,
Laura Bies,
JiYing Song,
Ton N. Schumacher
Publication year - 2013
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.1301270
Subject(s) - t cell receptor , blockade , cancer research , tumor microenvironment , prostate cancer , biology , transforming growth factor , t cell , signal transduction , cancer , immunology , receptor , microbiology and biotechnology , immune system , tumor cells , genetics
TCR gene therapy is a promising approach for the treatment of various human malignancies. However, the tumoricidal activity of TCR-modified T cells may be limited by local immunosuppressive mechanisms within the tumor environment. In particular, many malignancies induce T cell suppression in their microenvironment by TGF-β secretion. In this study, we evaluate whether blockade of TGF-β signaling in TCR-modified T cells enhances TCR gene therapy efficacy in an autochthonous mouse tumor model. Treatment of mice with advanced prostate cancer with T cells genetically engineered to express a tumor-reactive TCR and a dominant-negative TGF-β receptor II induces complete and sustained tumor regression, enhances survival, and leads to restored differentiation of prostate epithelium. These data demonstrate the potential to tailor the activity of TCR-modified T cells by additional genetic modification and provide a strong rationale for the clinical testing of TGF-β signaling blockade to enhance TCR gene therapy against advanced cancers.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom