Cutting Edge: IRF8 Regulates Bax Transcription In Vivo in Primary Myeloid Cells
Author(s) -
Jine Yang,
Xiaolin Hu,
Mary Ann Zimmerman,
Christina TorresRouff,
Dafeng Yang,
Sylvia B. Smith,
Kebin Liu
Publication year - 2011
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.1101034
Subject(s) - irf8 , myeloid , bone marrow , biology , microbiology and biotechnology , transcription factor , cancer research , immunology , gene , genetics
A prominent phenotype of IRF8 knockout (KO) mice is the uncontrolled expansion of immature myeloid cells. The molecular mechanism underlying this myeloproliferative syndrome is still elusive. In this study, we observed that Bax expression level is low in bone marrow preginitor cells and increases dramatically in primary myeloid cells in wt mice. In contrast, Bax expression level remained at a low level in primarymyeloid cells in IRF8 KO mice. However, in vitro IRF8 KO bone marrow-differentiated myeloid cells expressed Bax at a level as high as that in wild type myeloid cells. Furthermore, we demonstrated that IRF8 specifically binds to the Bax promoter region in primary myeloid cells. Functional analysis indicated that IRF8 deficiency results in increased resistance of the primary myeloid cells to Fas-mediated apoptosis. Our findings show that IRF8 directly regulates Bax transcription in vivo, but not in vitro during myeloid cell lineage differentiation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom