z-logo
open-access-imgOpen Access
Identification of Semaphorin 4B as a Negative Regulator of Basophil-Mediated Immune Responses
Author(s) -
Yukinobu Nakagawa,
Hyota Takamatsu,
Tatsusada Okuno,
Sujin Kang,
Satoshi Nojima,
Tetsuya Kimura,
Tatsuki R. Kataoka,
Masahito Ikawa,
Toshihiko Toyofuku,
Ichiro Katayama,
Atsushi Kumanogoh
Publication year - 2011
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.1003485
Subject(s) - basophil , immunoglobulin e , immunology , basophil activation , semaphorin , immune system , microbiology and biotechnology , biology , t cell , antibody , receptor , biochemistry
Basophils are strong mediators of Th2 responses during helminthic infections. Recently, basophils were shown to function as APCs and promote both Th2 skewing and humoral memory responses. However, the mechanisms that regulate basophils are still unclear. In this article, we show that a class IV semaphorin, Sema4B, negatively regulates basophil functions through T cell-basophil contacts. In a screen to identify semaphorins that function in the immune system, we determined that Sema4B is expressed in T and B cells. Interestingly, Sema4B(-/-) mice had considerably increased serum IgE levels despite normal lymphocyte and dendritic cell functions. Recombinant Sema4B significantly inhibited IL-4 and IL-6 production from basophils in response to various stimuli, including IL-3, papain, and FcεRI cross-linking. In addition, T cell-derived Sema4B, which accumulated at contact sites between basophils and CD4(+) T cells, suppressed basophil-mediated Th2 skewing, suggesting that Sema4B regulates basophil responses through cognate cell-cell contacts. Furthermore, Sema4B(-/-) mice had enhanced basophil-mediated memory IgE production, which was abolished by treating with an anti-FcεRIα Ab. Collectively, these results indicate that Sema4B negatively regulates basophil-mediated Th2 and humoral memory responses.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom