Inhibition of Glyceraldehyde-3-Phosphate Dehydrogenase Activity by Antibodies Present in the Cerebrospinal Fluid of Patients with Multiple Sclerosis
Author(s) -
Johanna Kölln,
Yiping Zhang,
Gaby Thai,
Michael A. Demetriou,
Neal Hermanowicz,
Pierre Duquette,
Stanley van den Noort,
Yufen Qin
Publication year - 2010
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0904083
Subject(s) - glyceraldehyde 3 phosphate dehydrogenase , cerebrospinal fluid , glyceraldehyde , lactate dehydrogenase , chemistry , dehydrogenase , multiple sclerosis , antibody , immunoglobulin g , enzyme , microbiology and biotechnology , biochemistry , immunology , medicine , biology
We have previously shown that B cells and Abs reactive with GAPDH and antitriosephosphate isomerase (TPI) are present in lesions and cerebrospinal fluid (CSF) in multiple sclerosis (MS). In the current study, we studied the effect of anti-GAPDH and anti-TPI CSF IgG on the glycolytic enzyme activity of GAPDH and TPI after exposure to intrathecal IgG from 10 patients with MS and 34 patients with other neurologic diseases. The degree of inhibition of GAPDH activity by CSF anti-GAPDH IgG in the seven MS samples tested varied from 13 to 98%, which seemed to correlate with the percentage of anti-GAPDH IgG in the CSF IgG (1-45%). Inhibition of GAPDH activity (18 and 23%) by CSF IgG was seen in two of the 34 patients with other neurologic diseases, corresponding to the low percentage of CSF anti-GAPDH IgG (1 and 8%). In addition, depletion of anti-GAPDH IgG from CSF IgG, using immobilized GAPDH, removed the inhibitory effect of the IgG on GAPDH. No inhibition of GAPDH activity was seen with CSF samples not containing anti-GAPDH IgG. No inhibition of TPI activity was seen with any purified CSF IgG sample. These findings demonstrate an increased percentage of anti-GAPDH Abs in the CSF of patients with MS that can inhibit GAPDH glycolytic enzyme activity and may contribute to neuroaxonal degeneration.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom