β-Catenin Signaling Mediates CD4 Expression on Mature CD8+ T Cells
Author(s) -
Jason M. Schenkel,
Andrew Zloza,
Wei Li,
Srinivas D. Narasipura,
Lena AlHarthi
Publication year - 2010
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0902572
Subject(s) - microbiology and biotechnology , cytotoxic t cell , biology , cd8 , t cell , wnt signaling pathway , transfection , zap70 , signal transduction , natural killer t cell , cell culture , immunology , immune system , in vitro , biochemistry , genetics
Upon activation, a subset of mature human CD8(+) T cells re-expresses CD4 dimly. This CD4(dim)CD8(bright) T cell population is genuine and enriched in antiviral CD8(+) T cell responses. The signaling pathway that leads to CD4 re-expression on mature CD8(+) T cells is not clear. Given that Wnt/beta-catenin signaling plays a critical role in the transition of CD4(-)CD8(-) to CD4(+)CD8(+) thymocytes, we determined whether beta-catenin mediates CD4 expression on mature CD8(+) T cells. We demonstrate that active beta-catenin expression is 20-fold higher on CD4(dim)CD8(bright) than CD4(-)CD8(+) T cells. Activation of beta-catenin signaling, through LiCl or transfection with a constitutively active construct of beta-catenin, induced CD4 on CD8(+) T cells by approximately 10-fold. Conversely, inhibition of beta-catenin signaling through transfection with a dominant-negative construct for T cell factor-4, a downstream effector of beta-catenin signaling, diminished CD4 expression on CD8(+) T cells by 50% in response to T cell activation. Beta-catenin-mediated induction of CD4 on CD8(+) T cells is transcriptionally regulated, as it induced CD4 mRNA, and T cell factor/lymphoid enhancer factor sites were identified within the human CD4 promoter. Further, beta-catenin expression induced the antiapoptotic factor BcL-xL, suggesting that beta-catenin may mediate protection against activation-induced cell death. Collectively, these data demonstrate that beta-catenin is critical in inducing CD4 expression on mature CD8(+) T cells, suggesting that it is a common pathway for CD4 upregulation among thymocytes and mature CD8(+) T cells.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom