Generation of B Cell Memory to the Bacterial Polysaccharide α-1,3 Dextran
Author(s) -
Jeremy B. Foote,
John F. Kearney
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0902473
Subject(s) - enterobacter cloacae , titer , cell , b cell , microbiology and biotechnology , cell growth , biology , polysaccharide , chemistry , immunology , enterobacteriaceae , biochemistry , escherichia coli , antibody , gene
B1b B cells generate a novel form of memory and provide Ab mediated-protection to persisting bacterial pathogens. To understand how B1b B cells establish memory to polysaccharide Ags, we studied an oligoclonal B cell response to alpha-1,3 dextran (DEX) expressed on Enterobacter cloacae. B cells specific for DEX enrich in the marginal zone (MZ) and B1b B cell populations. After E. cloacae immunization, MZ B cells were responsible for the generation of initial peak DEX-specific Ab titers, whereas, DEX-specific B1b B cells expanded and played an important role in boosted production of DEX-specific Ab titers upon E. cloacae rechallenge. Cell transfer experiments demonstrate that B1b B cells possess the capacity for both robust proliferation and plasma cell differentiation, thus distinguishing themselves from MZ B cells, which uniformly commit to plasma cell differentiation. These results define B1b B cells as the principal reservoir for memory to bacterial-associated polysaccharide Ags.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom