z-logo
open-access-imgOpen Access
TRIF Signaling Stimulates Translation of TNF-α mRNA via Prolonged Activation of MK2
Author(s) -
Petra Gais,
Christopher Tiedje,
Felicitas Altmayr,
Matthias Gaestel,
Heike Weighardt,
Bernhard Holzmann
Publication year - 2010
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0902456
Subject(s) - trif , signal transduction , messenger rna , p38 mitogen activated protein kinases , signal transducing adaptor protein , tumor necrosis factor alpha , microbiology and biotechnology , phosphorylation , tlr3 , biology , protein kinase a , chemistry , toll like receptor , receptor , immunology , gene , biochemistry , innate immune system
The adapter protein TRIF mediates signal transduction through TLR3 and TLR4, inducing production of type I IFNs and inflammatory cytokines. The present study investigates the mechanisms by which TRIF signaling controls TNF-alpha biosynthesis. We provide evidence that, in LPS-stimulated murine dendritic cells, TRIF stimulates TNF-alpha biosynthesis selectively at the posttranscriptional level by promoting mRNA translation. In the absence of functional TRIF, the production of TNF-alpha protein was severely impaired, whereas TNF-alpha mRNA levels and stability, as well as transcriptional activity of the Tnfa gene, were not affected. Similarly, TRIF was required for production of LPS-induced TNF-alpha protein, but not of mRNA, in bone marrow-derived macrophages. In peritoneal macrophages, however, TRIF was also required for normal induction of TNF-alpha mRNA, suggesting cell type-related functions of TRIF. The influence of TRIF on dendritic cell TNF-alpha production was independent of type I IFNs. TRIF was required for prolonged activation of MAPKs in LPS-stimulated dendritic cells but was dispensable for the activation of NF-kappaB. Inhibition of late p38 activity attenuated LPS-stimulated elevation of TNF-alpha protein but not mRNA levels. The p38 effector kinase MK2 was directly activated through the TRIF pathway of TLR4. Importantly, stimulation of Mk2(-/-) cells through TLR3 or TLR4 severely impaired TNF-alpha protein production but did not affect TNF-alpha mRNA induction. Together, these results indicate that the TRIF signaling pathway promotes TNF-alpha mRNA translation through activation of the protein kinase MK2.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom