z-logo
open-access-imgOpen Access
Chemerin Contributes to Inflammation by Promoting Macrophage Adhesion to VCAM-1 and Fibronectin through Clustering of VLA-4 and VLA-5
Author(s) -
Rosie Hart,
David R. Greaves
Publication year - 2010
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0902154
Subject(s) - chemerin , cd18 , integrin , fibronectin , microbiology and biotechnology , cell adhesion molecule , chemistry , cell adhesion , monocyte , inflammation , extracellular matrix , adhesion , biology , receptor , immunology , biochemistry , endocrinology , insulin resistance , organic chemistry , insulin , adipokine
Chemerin is a potent macrophage chemoattractant protein. We used murine peritoneal exudate cells (PECs) in adhesion, flow cytometry, and confocal microscopy assays to test the hypothesis that chemerin can also contribute to inflammation by promoting macrophage adhesion. Chemerin stimulated the adhesion of PECs to the extracellular matrix protein fibronectin and to the adhesion molecule VCAM-1 within a minute, with an EC(50) of 322 and 196 pM, respectively. Experiments using pertussis toxin and PECs from ChemR23(-/-) mice demonstrated that chemerin stimulated the adhesion of macrophages via the Gi protein-coupled receptor ChemR23. Blocking Abs against integrin subunits revealed that 89% of chemerin-stimulated adhesion to fibronectin was dependent on increased avidity of the integrin VLA-5 (alpha(5)beta(1)) and that 88% of adhesion to VCAM-1 was dependent on increased avidity of VLA-4 (alpha(4)beta(1)). Although chemerin was unable to induce an increase in integrin affinity as judged by the binding of soluble ligand, experiments using confocal microscopy revealed an increase in valency resulting from integrin clustering as the mechanism responsible for chemerin-stimulated macrophage adhesion. PI3K, Akt, and p38 were identified as key signaling mediators in chemerin-stimulated adhesion. The finding that chemerin can rapidly stimulate macrophage adhesion to extracellular matrix proteins and adhesion molecules, taken together with its ability to promote chemotaxis, suggests a novel role for chemerin in the recruitment and retention of macrophages at sites of inflammation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom