Histone Acetyltransferase Cofactor Trrap Is Essential for Maintaining the Hematopoietic Stem/Progenitor Cell Pool
Author(s) -
Joanna I. Loizou,
Gabriela Oser,
Vivek Shukla,
Carla Sawan,
Rabih Murr,
ZhaoQi Wang,
Andreas Trumpp,
Zdenko Herceg
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0901969
Subject(s) - histone acetyltransferase , haematopoiesis , stem cell , progenitor cell , microbiology and biotechnology , histone , biology , cancer research , biochemistry , dna
The pool of hematopoietic stem/progenitor cells, which provide life-long reconstitution of all hematopoietic lineages, is tightly controlled and regulated by self-renewal and apoptosis. Histone modifiers and chromatin states are believed to govern establishment, maintenance, and propagation of distinct patterns of gene expression in stem cells, however the underlying mechanism remains poorly understood. In this study, we identified a role for the histone acetytransferase cofactor Trrap in the maintenance of hematopietic stem/progenitor cells. Conditional deletion of the Trrap gene in mice resulted in ablation of bone marrow and increased lethality. This was due to the depletion of early hematopoietic progenitors, including hematopoietic stem cells, via a cell-autonomous mechanism. Analysis of purified bone marrow progenitors revealed that these defects are associated with induction of p53-independent apoptosis and deregulation of Myc transcription factors. Together, this study has identified a critical role for Trrap in the mechanism that maintains hematopoietic stem cells and hematopoietic system, and underscores the importance of Trrap and histone modifications in tissue homeostasis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom