ERK-Dependent T Cell Receptor Threshold Calibration in Rheumatoid Arthritis
Author(s) -
Karnail Singh,
Pratima Deshpande,
Sergey Pryshchep,
Inés Colmegna,
Vladimir M. Liarski,
Cornelia M. Weyand,
Jörg J. Goronzy
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0901784
Subject(s) - mapk/erk pathway , rheumatoid arthritis , immunology , t cell , medicine , autoimmunity , t cell receptor , arthritis , immune system , pathogenesis , stimulation , cd8 , phosphorylation , cancer research , endocrinology , biology , microbiology and biotechnology
Immune responses to citrullinated neoantigens and clinical efficacy of costimulation blockade indicate a general defect in maintaining T cell tolerance in rheumatoid arthritis (RA). To examine whether TCR threshold calibration contributes to disease pathogenesis, signaling in RA T cells was quantified. RA patients had a selective increase in ERK phosphorylation compared with demographically matched controls due to a mechanism distal of Ras activation. Increased ERK responses included naive and memory CD4 and CD8 T cells and did not correlate with disease activity. The augmented ERK activity delayed SHP-1 recruitment to the TCR synapse and sustained TCR-induced Zap70 and NF-kappaB signaling, facilitating responses to suboptimal stimulation. Increased responsiveness of the ERK pathway was also a characteristic finding in the SKG mouse model of RA where it preceded clinical symptoms. Treatment with subtherapeutic doses of a MEK-1/2 inhibitor delayed arthritis onset and reduced severity, suggesting that increased ERK phosphorylation predisposes for autoimmunity and can be targeted to prevent disease.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom