z-logo
open-access-imgOpen Access
Increased Antigen Cross-Presentation but Impaired Cross-Priming after Activation of Peroxisome Proliferator-Activated Receptor γ Is Mediated by Up-Regulation of B7H1
Author(s) -
Luisa Klotz,
Stephanie Hucke,
Dominik Thimm,
Sabine Claßen,
Andrea Gaarz,
Joachim L. Schultze,
Frank Edenhofer,
Christian Kurts,
Thomas Klockgether,
Andreas Limmer,
Percy A. Knolle,
Sven Burgdorf
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0804260
Subject(s) - cross presentation , microbiology and biotechnology , endocytosis , mannose receptor , antigen presentation , receptor , biology , t cell , peroxisome proliferator activated receptor , transcription factor , endocytic cycle , immune system , immunology , in vitro , biochemistry , macrophage , gene
Dendritic cells are able to take up exogenous Ags and present Ag-derived peptides on MHC class I molecules, a process termed cross-presentation. The mannose receptor (MR), an endocytic receptor expressed on a variety of APCs, has been demonstrated to target soluble Ags exclusively toward cross-presentation. In this study, we investigated the role of the murine nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma), a ligand-activated transcription factor with immunomodulatory properties, in MR-mediated endocytosis and cross-presentation of the model Ag OVA. We could demonstrate both in vitro and in vivo that activation of PPARgamma resulted in increased MR expression, which in consequence led to enhanced MR-mediated endocytosis and elevated cross-presentation of soluble OVA. Concomitantly, activation of PPARgamma in dendritic cells induced up-regulation of the coinhibitory molecule B7H1, which, despite enhanced cross-presentation, caused an impaired activation of naive OVA-specific CD8(+) T cells and the induction of T cell tolerance. These data provide a mechanistic basis for the immunomodulatory action of PPARgamma which might open new possibilities in the development of therapeutic approaches aimed at the control of excessive immune responses, e.g., in T cell-mediated autoimmunity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom