z-logo
open-access-imgOpen Access
Targeted Disruption of the Gene Encoding the Murine Small Subunit of Carboxypeptidase N (CPN1) Causes Susceptibility to C5a Anaphylatoxin-Mediated Shock
Author(s) -
Stacey L. MuellerOrtiz,
Dachun Wang,
John E. Morales,
Li Li,
JuiYoa Chang,
Rick A. Wetsel
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0804207
Subject(s) - anaphylatoxin , carboxypeptidase , c5a receptor , complement system , complement component 5 , biology , histamine , arginine , immunology , chemistry , pharmacology , biochemistry , amino acid , enzyme , immune system
Carboxypeptidase N (CPN) is a plasma zinc metalloprotease, which consists of two enzymatically active small subunits (CPN1) and two large subunits (CPN2) that protect the protein from degradation. Historically, CPN has been implicated as a major regulator of inflammation by its enzymatic cleavage of functionally important arginine and lysine amino acids from potent phlogistic molecules, such as the complement anaphylatoxins C3a and C5a. Because of no known complete CPN deficiencies, the biological impact of CPN in vivo has been difficult to evaluate. Here, we report the generation of a mouse with complete CPN deficiency by targeted disruption of the CPN1 gene. CPN1(-/-) mice were hypersensitive to lethal anaphylactic shock due to acute complement activation by cobra venom factor. This hypersensitivity was completely resolved in CPN1(-/-)/C5aR(-/-) but not in CPN1(-/-)/C3aR(-/-) mice. Moreover, CPN1(-/-) mice given C5a i.v., but not C3a, experienced 100% mortality. This C5a-induced mortality was reduced to 20% when CPN1(-/-) mice were treated with an antihistamine before C5a challenge. These studies describe for the first time a complete deficiency of CPN and demonstrate 1) that CPN plays a requisite role in regulating the lethal effects of anaphylatoxin-mediated shock, 2) that these lethal effects are mediated predominantly by C5a-induced histamine release, and 3) that C3a does not contribute significantly to shock following acute complement activation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom