Modulating the Expression of IFN Regulatory Factor 8 Alters the Protumorigenic Behavior of CD11b+Gr-1+ Myeloid Cells
Author(s) -
Trina J. Stewart,
David J. Liewehr,
Seth M. Steinberg,
Kristy M. Greeneltch,
Scott I. Abrams
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0804132
Subject(s) - integrin alpha m , immune system , myeloid , biology , cancer research , chemokine , cytokine , tumor progression , immunology , myeloid derived suppressor cell , microbiology and biotechnology , cancer , suppressor , genetics
CD11b(+)Gr-1(+)-expressing cells, termed myeloid-derived suppressor cells, can mediate immunosuppression and tumor progression. However, the intrinsic molecular events that drive their protumorigenic behavior remain to be elucidated. Although CD11b(+)Gr-1(+) cells exist at low frequencies in normal mice, it also remains unresolved whether they are biologically distinct from those of tumor-bearing hosts. These objectives were investigated using CD11b(+)Gr-1(+) cells from both implantable (4T1) and autochthonous (mouse mammary tumor virus-polyomavirus middle T Ag (MMTV-PyMT)) mouse models of mammary carcinoma. Limited variation was observed in the expression of markers associated with immunoregulation between CD11b(+)Gr-1(+) cells of both tumor models, as well as with their respective controls (Cnt). Despite limited differences in phenotype, tumor-induced CD11b(+)Gr-1(+) cells were found to produce a more immunosuppressive cytokine profile than that observed by Cnt CD11b(+)Gr-1(+) cells. Furthermore, when admixed with tumor cells, CD11b(+)Gr-1(+) cells from tumor-bearing mice significantly enhanced neoplastic growth compared with counterpart cells from Cnt mice. However, the protumorigenic behavior of these tumor-induced CD11b(+)Gr-1(+) cells was significantly diminished when the expression of IFN regulatory factor 8, a key myeloid-associated transcription factor, was enhanced. The loss of this protumorigenic effect occurred independently of the host immune system and correlated with a CD11b(+)Gr-1(+) cytokine/chemokine production pattern that resembled cells from nontumor-bearing Cnt mice. Overall, our data indicate that 1) tumor-induced CD11b(+)Gr-1(+) cells from both cancer models were phenotypically similar, but biologically distinct from their nontumor-bearing counterparts and 2) modulation of IFN regulatory factor 8 levels in tumor-induced CD11b(+)Gr-1(+) cells can significantly abrogate their protumorigenic behavior, which may have important implications for cancer therapy.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom