z-logo
open-access-imgOpen Access
Antibodies in a Heavy Chain Knock-In Mouse Exhibit Characteristics of Early Heavy Chain Rearrangement
Author(s) -
Lenka Yunk,
Wenzhao Meng,
Philip L. Cohen,
Robert A. Eisenberg,
Eline T. Luning Prak
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0804060
Subject(s) - allelic exclusion , gene rearrangement , biology , allele , immunoglobulin heavy chain , microbiology and biotechnology , gene , locus (genetics) , antibody , v(d)j recombination , genetics , t cell receptor , t cell , recombination , immune system
Studies in autoantibody transgenic mice have demonstrated receptor editing rearrangements at Ab H and L chain loci. However, the physiologic role of H chain editing (V(H) replacement and rearrangement on the second allele) has been called into question. It is unclear if additional rounds of H chain rearrangement are driven by BCR specificity. In this study, we analyze the manner in which B cells undergo additional H chain rearrangements in an anti-DNA H chain knock-in mouse, B6.56R. We find that rearrangements in 56R(+) B cells tend to involve the D gene locus on both alleles and the most J(H)-proximal V(H) gene segments on the endogenous allele. As a result, some B cells exhibit V(D)J rearrangements on both H chain alleles, yet allelic exclusion is tightly maintained in mature 56R B cells. As B cells mature, a higher proportion expresses the nontransgenic H chain allele. Rearrangements on both H chain alleles exhibit junctional diversity consistent with TdT-mediated N-addition, and TdT RNA is expressed exclusively at the pro-B cell stage in B6.56R. Collectively, these findings favor a single, early window of H chain rearrangement in B6.56R that precedes the expression of a functional BCR. B cells that happen to successfully rearrange another H chain may be favored in the periphery.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom