z-logo
open-access-imgOpen Access
A Single Residue, Arginine 65, Is Critical for the Functional Interaction of Leukocyte-Associated Inhibitory Receptor-1 with Collagens
Author(s) -
Tang Xiaobin,
Sriram Narayanan,
Giovanna Peruzzi,
Akintomide Apara,
Kannan Natarajan,
David H. Margulies,
John E. Coligan,
Francisco Borrego
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0804052
Subject(s) - receptor , avidity , autophosphorylation , microbiology and biotechnology , chemistry , inhibitory postsynaptic potential , biochemistry , biology , antibody , phosphorylation , immunology , endocrinology , protein kinase a
ITIM-containing receptors play an essential role in modulating immune responses. Leukocyte-associated inhibitory receptor (LAIR)-1, also known as CD305, is an ITIM-containing inhibitory receptor, expressed by all leukocytes, that binds collagens. In this article, we investigate the effect of a conservative R65K mutation on LAIR-1 ligand binding and function. Compared with LAIR-1 wild-type (wt)-expressing cells, LAIR-1 R65K cells show markedly reduced binding to collagen, which correlates with a reduced level of LAIR-1 polarization to the site of interaction with collagens. Both LAIR-1 wt and R65K cells can generate intracellular signals when ligated by anti-LAIR-1 mAb, but only LAIR-1 wt cells respond to collagens or matrigel. In agreement, surface plasmon resonance analyses showed that LAIR-1 R65K protein has markedly reduced avidity for collagen type I compared with LAIR-1 wt. Likewise, LAIR-1 R65K protein has decreased avidity for cells expressing transmembrane collagen XVII. Thus, a single residue, Arg65, is critical for the interaction of LAIR-1 with collagens.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom