Progesterone Inhibits Activation-Induced Deaminase by Binding to the Promoter
Author(s) -
Siim Pauklin,
Svend K. PetersenMahrt
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0803915
Subject(s) - somatic hypermutation , immunoglobulin class switching , activation induced (cytidine) deaminase , cytidine deaminase , biology , microbiology and biotechnology , promoter , transcription (linguistics) , somatic cell , transcription factor , b cell , chemistry , dna , gene , genetics , antibody , gene expression , linguistics , philosophy
Regulation of activation-induced deaminase (AID), an essential factor in Ig diversification, can alter not only somatic hypermutation and class switch recombination (CSR), but may also influence oncogenesis. AID deaminates cytosine to uracil in the Ig locus, thereby initiating Ig diversification. Unregulated AID can induce oncogenic DNA alterations in Ig and non-Ig loci, leading to mutations, recombination, and translocations. In this study, we demonstrate that AID mRNA production in activated mouse splenic B cells can be reduced by treatment with the sex hormone progesterone. This down-regulation is independent of translation or splicing and is predominantly achieved by inhibiting transcription. During cell treatment we could detect progesterone receptor bound to the AID promoter in proximity to NF-kappaB binding. Importantly, the progesterone-induced repression was also extended to the protein level of AID and its activity on somatic hypermutation and class switch recombination.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom