TREM-1 Activation Alters the Dynamics of Pulmonary IRAK-M Expression In Vivo and Improves Host Defense during Pneumococcal Pneumonia
Author(s) -
Heimo Lagler,
Omar Sharif,
Isabella Haslinger,
Ulrich Matt,
Karin Stich,
Tanja Furtner,
Bianca Doninger,
Katharina Schmid,
Rainer Gattringer,
Alex F. de Vos,
Sylvia Knapp
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0803862
Subject(s) - pneumococcal pneumonia , in vivo , pneumonia , host (biology) , immunology , biology , dynamics (music) , microbiology and biotechnology , streptococcus pneumoniae , medicine , genetics , psychology , antibiotics , pedagogy
Triggering receptor expressed on myeloid cells-1 (TREM-1) is an amplifier of TLR-mediated inflammation during bacterial infections. Thus far, TREM-1 is primarily associated with unwanted signs of overwhelming inflammation, rendering it an attractive target for conditions such as sepsis. Respiratory tract infections are the leading cause of sepsis, but the biological role of TREM-1 therein is poorly understood. To determine the function of TREM-1 in pneumococcal pneumonia, we first established TREM-1 up-regulation in infected lungs and human plasma together with augmented alveolar macrophage responsiveness toward Streptococcus pneumoniae. Mice treated with an agonistic TREM-1 Ab and infected with S. pneumoniae exhibited an enhanced early induction of the inflammatory response that was indirectly associated with lower levels of negative regulators of TLR signaling in lung tissue in vivo. Later in infection, TREM-1 engagement altered S. pneumoniae-induced IRAK-M (IL-1R-associated kinase-M) kinetics so as to promote the resolution of pneumonia and remarkably led to an accelerated elimination of bacteria and consequently improved survival. These data show that TREM-1 exerts a protective role in the innate immune response to a common bacterial infection and suggest that caution should be exerted in modulating TREM-1 activity during certain clinically relevant bacterial infections.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom