z-logo
open-access-imgOpen Access
A Role of IgM Antibodies in Monosodium Urate Crystal Formation and Associated Adjuvanticity
Author(s) -
Uliana Kanevets,
Karan Sharma,
Karen Dresser,
Yan Shi
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0803777
Subject(s) - uric acid , chemistry , proinflammatory cytokine , immune system , adjuvant , in vivo , pathogenesis , inflammation , antibody , immunology , biochemistry , medicine , biology , microbiology and biotechnology
Uric acid is released from injured cells and can act as an adjuvant signal to the immune system. Uric acid crystals invoke strong inflammatory responses in tissues. Although their biological effects are evident and the associated signaling mechanisms are becoming clear, it remains unexplained as to why uric acid precipitates rapidly in vivo, in sharp contrast to the minimal crystallization in vitro. We report in this study that a group of IgM Abs is able to bind to these crystals, which is interesting in light that B cell-deficient mice do not sense the proinflammatory adjuvant effect of uric acid. The titers of these Abs increase upon immunization with uric acid crystals. We have produced large quantities of such mAbs. The purified IgM Abs can significantly facilitate uric acid precipitation to form the inflammatory crystals in vitro. Infusion of these Abs into B cell-deficient mice significantly increases the basal level of inflammation in these recipients and restores the host's ability to sense uric acid's adjuvanticity. Therefore, we have identified a factor in determining uric acid precipitation and possibly its ability to function as an endogenous adjuvant. This finding suggests a new mechanism of the pathogenesis of gouty arthritis and uric acid-induced immune activation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom