SHIP Regulates the Reciprocal Development of T Regulatory and Th17 Cells
Author(s) -
Natasha R. Locke,
Scott J. Patterson,
Melisa J. Hamilton,
Laura M. Sly,
Gerald Krystal,
Megan K. Levings
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0803749
Subject(s) - foxp3 , microbiology and biotechnology , pi3k/akt/mtor pathway , regulatory t cell , biology , regulatory b cells , proinflammatory cytokine , immune system , t cell , retinoic acid , rar related orphan receptor gamma , immunology , il 2 receptor , signal transduction , inflammation , interleukin 10 , cell culture , genetics
Maintaining an appropriate balance between subsets of CD4(+) Th and T regulatory cells (Tregs) is critical to maintain immune homeostasis and prevent autoimmunity. Through a common requirement for TGF-beta, the development of peripherally induced Tregs is intimately linked to that of Th17 cells, with the resulting lineages depending on the presence of proinflammatory cytokines such as IL-6. Currently very little is known about the molecular signaling pathways that control the development of Tregs vs Th17 cells. Reduced activity of the PI3K pathway is required for TGF-beta-mediated induction of Foxp3 expression and the suppressive activity of Tregs. To investigate how negative regulators of the PI3K pathway impact Treg development, we investigated whether SHIP, a lipid phosphatase that regulates PI3K activity, also plays a role in the development and function of Tregs. SHIP-deficient Tregs maintained suppressive capacity in vitro and in a T cell transfer model of colitis. Surprisingly, SHIP-deficient Th cells were significantly less able to cause colitis than were wild-type Th cells due to a profound deficiency in Th17 cell differentiation, both in vitro and in vivo. The inability of SHIP-deficient T cells to develop into Th17 cells was accompanied by decreased IL-6-stimulated phosphorylation of STAT3 and an increased capacity to differentiate into Treg cells under the influence of TGF-beta and retinoic acid. These data indicate that SHIP is essential for normal Th17 cell development and that this lipid phosphatase plays a key role in the reciprocal regulation of Tregs and Th17 cells.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom