Anergic T Cells Are Metabolically Anergic
Author(s) -
Yan Zheng,
Greg M. Delgoffe,
Christian F. Meyer,
Waipan Chan,
Jonathan D. Powell
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0803510
Subject(s) - t cell , microbiology and biotechnology , cd28 , context (archaeology) , effector , t cell receptor , function (biology) , biology , immunology , immune system , paleontology
Full T cell activation requires TCR engagement (signal 1) in the context of costimulation (signal 2). Costimulation is required for maximal expression of effector cytokines and prevention of T cell anergy. It has become increasingly clear that another major function of costimulation is to up-regulate the metabolic machinery necessary for T cell function. In this report we demonstrate that anergic T cells are metabolically anergic, in that upon full stimulation (signals 1 plus 2) they fail to up-regulate the machinery necessary to support increased metabolism. These findings suggest that one mechanism responsible for the maintenance of T cell anergy is failure to up-regulate the metabolic machinery. Furthermore, we demonstrate that by blocking leucine, glucose, and energy metabolism, T cell activation is mitigated. Additionally, inhibition of these metabolic pathways during T cell activation leads to anergy in Th1-differentiated cells. Overall, our findings extend the role of T cell metabolism in regulating T cell function.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom