CD30 Is Required for CCL21 Expression and CD4 T Cell Recruitment in the Absence of Lymphotoxin Signals
Author(s) -
Vasileios Bekiaris,
Fabrina Gaspal,
MiYeon Kim,
David R. Withers,
Fiona M. McConnell,
Graham Anderson,
Peter J. L. Lane
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0803481
Subject(s) - lymphotoxin , lymphotoxin beta receptor , ccl21 , tumor necrosis factor alpha , inducer , lymphotoxin alpha , biology , microbiology and biotechnology , chemokine , cd30 , white pulp , cxcl13 , immunology , chemokine receptor , lymphatic system , inflammation , lymphoma , genetics , gene
Lymphoid tissue inducer cells express a diverse array of tumor necrosis family ligands, including those that bind CD30 and the lymphotoxin beta receptor. Both of these signaling pathways have been linked with B/T segregation in the spleen. In this study, we have dissected a lymphotoxin-independent CD30-dependent signal for the induction of expression of the T zone chemokine, CCL21. Reduced expression of CCL21 due to CD30 deficiency was functionally significant: mice deficient in both lymphotoxin and CD30 (dKO) signals had significantly smaller accumulations of lymphocytes in their splenic white pulp areas, with no evidence of focal aggregation of T cells. Furthermore, recruitment of wild-type CD4 T cells was poor in dKO mice compared with both wild-type or lymphotoxin-deficient mice. Phylogeny suggests that CD30 signals predated those through the lymphotoxin beta receptor. We suggest that CD30 signals from lymphoid tissue inducer cells were a primitive mechanism to recruit and prime CD4 T cells. This would have been a stepping stone in the evolution of the highly organized lymphotoxin dependent B and T white pulp areas within which CD4-dependent memory Ab responses now develop.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom