z-logo
open-access-imgOpen Access
CD44high Memory CD8 T Cells Synergize with CpG DNA to Activate Dendritic Cell IL-12p70 Production
Author(s) -
Kok Loon Wong,
Li Fang Melissa Tang,
Fei Chuin Lew,
Hok Sum Wong,
Yen Leong Chua,
Paul A. MacAry,
David M. Kemeny
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0803473
Subject(s) - cpg site , cytotoxic t cell , microbiology and biotechnology , cd8 , dna , chemistry , cancer research , biology , immunology , dna methylation , immune system , gene , biochemistry , in vitro , gene expression
Protective memory CD8 T cell responses are generally associated with the rapid and efficient acquisition of CTL function. However, the ability of memory CD8 T cells to modulate immune responses through interactions with dendritic cells (DCs) during the early states of secondary Ag exposure is poorly understood. In this study, we show that murine Ag-specific CD44(high) CD8 T cells, representing CD8 T cells of the memory phenotype, potently activate DCs to produce high levels of IL-12p70 in conjunction with stimulation of DCs with the TLR 9 ligand, unmethylated CpG DNA. IL-12p70 production was produced predominantly by CD8alpha(+) DCs and plasmacytoid DCs, and mediated by CD8 T cell-derived cytokines IFN-gamma, GM-CSF, TNF-alpha, and surface CD40L. We also find that CD44(high) memory phenotype CD8 T cells were better DC IL-12p70 stimulators than CD44(low) naive phenotype CD8 T cells, and this was attributed to higher levels of IFN-gamma and GM-CSF produced by CD44(high) memory phenotype CD8 T cells during their Ag specific interaction with DCs. Our study identifies CpG DNA as the most effective TLR ligand that cooperates with CD8 T cells for DC IL-12p70 production, and suggests that effectiveness of memory CD8 T cells could be attributed to their ability to rapidly and effectively induce protective Th1 immunity during early stages of pathogen reinfection.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom