z-logo
open-access-imgOpen Access
Alternatively Activated Macrophages Elicited by Helminth Infection Can Be Reprogrammed to Enable Microbial Killing
Author(s) -
Katie J. Mylonas,
Meera G. Nair,
Lidia Prieto-Lafuente,
Daniel Paape,
Judith E. Allen
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0803463
Subject(s) - arginase , biology , proinflammatory cytokine , immune system , macrophage , immunology , microbiology and biotechnology , in vivo , innate immune system , inflammation , in vitro , arginine , biochemistry , amino acid
The prime function of classically activated macrophages (activated by Th1-type signals, such as IFN-gamma) is microbial destruction. Alternatively activated macrophages (activated by Th2 cytokines, such as IL-4 and IL-13) play important roles in allergy and responses to helminth infection. We utilize a murine model of filarial infection, in which adult nematodes are surgically implanted into the peritoneal cavity of mice, as an in vivo source of alternatively activated macrophages. At 3 wk postinfection, the peritoneal exudate cell population is dominated by macrophages, termed nematode-elicited macrophages (NeMphi), that display IL-4-dependent features such as the expression of arginase 1, RELM-alpha (resistin-like molecule alpha), and Ym1. Since increasing evidence suggests that macrophages show functional adaptivity, the response of NeMphi to proinflammatory Th1-activating signals was investigated to determine whether a switch between alternative and classical activation could occur in macrophages differentiated in an in vivo infection setting. Despite the long-term exposure to Th2 cytokines and antiinflammatory signals in vivo, we found that NeMphi were not terminally differentiated but could develop a more classically activated phenotype in response to LPS and IFN-gamma. This was reflected by a switch in the enzymatic pathway for arginine metabolism from arginase to inducible NO synthase and the reduced expression of RELM-alpha and Ym1. Furthermore, this enabled NeMphi to become antimicrobial, as LPS/IFN-gamma-treated NeMphi produced NO that mediated killing of Leishmania mexicana. However, the adaptation to antimicrobial function did not extend to key regulatory pathways, such as IL-12 production, which remained unaltered.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom