Selective Priming and Expansion of Antigen-Specific Foxp3−CD4+ T Cells during Listeria monocytogenes Infection
Author(s) -
James M. Ertelt,
Jared H. Rowe,
Tanner M. Johanns,
Joseph C. Lai,
James B. McLachlan,
Sing Sing Way
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0803402
Subject(s) - foxp3 , priming (agriculture) , effector , biology , pathogen , immunology , microbiology and biotechnology , immune system , botany , germination
The Foxp3-expressing subset of regulatory CD4(+) T cells have defined Ag specificity and play essential roles in maintaining peripheral tolerance by suppressing the activation of self-reactive T cells. Similarly, during chronic infection, pathogen-specific Foxp3-expressing CD4(+) T cells expand and actively suppress pathogen-specific effector T cells. Herein, we used MHC class II tetramers and Foxp3(gfp) knockin mice to track the kinetics and magnitude whereby pathogen-specific Foxp3(+)CD4(+) and Foxp3(-)CD4(+) cells are primed and expand after acute infection with recombinant Listeria monocytogenes (Lm) expressing the non-"self"-Ag 2W1S(52-68). We demonstrate that Lm infection selectively primes proliferation, expansion, and subsequent contraction of Lm-specific Foxp3(-) effector CD4(+) cells, while the numbers of Lm-specific Foxp3(+)CD4(+) regulatory cells remain essentially unchanged. In sharp contrast, purified 2W1S(52-68) peptide primes coordinated expansion of both Foxp3(+) regulatory and Foxp3(-) effector T cells with the same Ag specificity. Taken together, these results indicate selective priming and expansion of Foxp3(-) CD4 T cells is a distinguishing feature for acute bacterial infection.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom