Identification and Characterization of a Human CD5+ Pre-Naive B Cell Population
Author(s) -
Jisoo Lee,
Stefan Kuchen,
Randy Fischer,
Sooghee Chang,
Peter E. Lipsky
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0803391
Subject(s) - cd5 , naive b cell , cd40 , immunology , b cell , population , biology , cd38 , b 1 cell , antibody , t cell , microbiology and biotechnology , cytotoxic t cell , immune system , medicine , antigen presenting cell , stem cell , in vitro , genetics , cd34 , environmental health
We have identified a distinct pre-naive B cell population circulating in human peripheral blood that exhibits an intermediate phenotype between transitional and naive B cells. Like human transitional B cells, these cells express CD5 but have intermediate densities of CD38, CD10, CD9, and the ABCB1 transporter compared with transitional and naive B cells. These pre-naive B cells account for a majority of circulating human CD5(+) B cells. Importantly, CD5(+) pre-naive B cells could be induced to differentiate into cells with a naive phenotype in vitro. CD5(+) pre-naive B cells show only partial responses to BCR stimulation and CD40 ligation and undergo more spontaneous apoptosis and cell death than do naive B cells, whereas BAFF/BLyS (B cell-activating factor belonging to the TNF family) did not enhance their survival compared with naive B cells. In contrast, CD5(+) pre-naive B cells carry out certain functions comparable to naive B cells, including the capacity to differentiate into plasma cells and the ability to function as APCs. Notably, an increased proportion of CD5(+) pre-naive B cells were found in peripheral blood of patients with systemic lupus erythematosus. These results have identified a unique intermediate in human naive B cell development within the peripheral blood and derangements of its homeostasis in patients with systemic lupus erythematosus.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom