z-logo
open-access-imgOpen Access
Cell-Autonomous Role for NF-κB in Immature Bone Marrow B Cells
Author(s) -
Estefanı́a Claudio,
Sun Saret,
Hongshan Wang,
Ulrich Siebenlist
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0803360
Subject(s) - bone marrow , nf κb , microbiology and biotechnology , biology , b cell , transcription factor , context (archaeology) , b 1 cell , cell growth , cell , immunology , cancer research , signal transduction , t cell , genetics , antibody , immune system , antigen presenting cell , paleontology , gene
The NF-kappaB transcription factors have many essential functions in B cells, such as during differentiation and proliferation of Ag-challenged mature B cells, but also during final maturation of developing B cells in the spleen. Among the various specific functions NF-kappaB factors carry out in these biologic contexts, their ability to assure the survival of mature and maturing B cells in the periphery stands out. Less clear is what if any roles NF-kappaB factors play during earlier stages of B cell development in the bone marrow. Using mice deficient in both NF-kappaB1 and NF-kappaB2, which are thus partially compromised in both the classical and alternative activation pathways, we demonstrate a B cell-autonomous contribution of NF-kappaB to the survival of immature B cells in the bone marrow. NF-kappaB1 and NF-kappaB2 also play a role during the earlier transition from proB to late preB cells; however, in this context these factors do not act in a B cell-autonomous fashion. Although NF-kappaB1 and NF-kappaB2 are not absolutely required for survival and progression of immature B cells in the bone marrow, they nevertheless make a significant contribution that marks the beginning of the profound cell-autonomous control these factors exert during all subsequent stages of B cell development. Therefore, the lifelong dependency of B cells on NF-kappaB-mediated survival functions is set in motion at the time of first expression of a full BCR.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom