z-logo
open-access-imgOpen Access
Potent Phagocytic Activity with Impaired Antigen Presentation Identifying Lipopolysaccharide-Tolerant Human Monocytes: Demonstration in Isolated Monocytes from Cystic Fibrosis Patients
Author(s) -
Carlos del Fresno,
Francisco GarcíaRío,
Vanesa Goméz-Piña,
Alessandra SoaresSchanoski,
Irene Fernández-Ruíz,
Teresa JuradoGuerrero,
Tasneem Kajiji,
Shu Chen,
Elvira Marín,
Ana Gutierrez del Arroyo,
Concepción Prados,
Francisco Arnalich,
Pablo FuentesPrior,
Subrha K. Biswas,
Eduardo LópezCollazo
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0803350
Subject(s) - lipopolysaccharide , cystic fibrosis , immunology , antigen presentation , antigen , medicine , monocyte , phagocytosis , microbiology and biotechnology , biology , immune system , t cell
Monocyte exposure to LPS induces a transient state in which these cells are refractory to further endotoxin stimulation. This phenomenon, termed endotoxin tolerance (ET), is characterized by a decreased production of cytokines in response to the proinflammatory stimulus. We have established a robust model of ET and have determined the time frame and features of LPS unresponsiveness in cultured human monocytes. A large number of genes transcribed in tolerant monocytes were classified as either "tolerizable" or "nontolerizable" depending on their expression levels during the ET phase. Tolerant monocytes exhibit rapid IL-1R-associated kinase-M (IRAK-M) overexpression, high levels of triggering receptor expressed on myeloid cells-1 (TREM-1) and CD64, and a marked down-regulation of MHC molecules and NF-kappaB2. These cells combine potent phagocytic activity with impaired capability for Ag presentation. We also show that circulating monocytes isolated from cystic fibrosis patients share all the determinants that characterize cells locked in an ET state. These findings identify a new mechanism that contributes to impaired inflammation in cystic fibrosis patients despite a high frequency of infections. Our results indicate that a tolerant phenotype interferes with timing, efficiency, and outcome of the innate immune responses against bacterial infections.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom