z-logo
open-access-imgOpen Access
A20 Negatively Regulates T Cell Receptor Signaling to NF-κB by Cleaving Malt1 Ubiquitin Chains
Author(s) -
Michael Düwel,
Verena Welteke,
Andrea Oeckinghaus,
Mathijs Baens,
Bernhard Kloo,
Uta Ferch,
Bryant G. Darnay,
Jürgen Ruland,
Peter Marynen,
Daniel Krappmann
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0803313
Subject(s) - iκb kinase , ubiquitin , deubiquitinating enzyme , microbiology and biotechnology , ubiquitin ligase , signal transduction , jurkat cells , t cell receptor , cd28 , biology , nf κb , t cell , chemistry , biochemistry , immunology , immune system , gene
The Carma1-Bcl10-Malt1 signaling module bridges TCR signaling to the canonical IkappaB kinase (IKK)/NF-kappaB pathway. Covalent attachment of regulatory ubiquitin chains to Malt1 paracaspase directs TCR signaling to IKK activation. Further, the ubiquitin-editing enzyme A20 was recently suggested to suppress T cell activation, but molecular targets for A20 remain elusive. In this paper, we show that A20 regulates the strength and duration of the IKK/NF-kappaB response upon TCR/CD28 costimulation. By catalyzing the removal of K63-linked ubiquitin chains from Malt1, A20 prevents sustained interaction between ubiquitinated Malt1 and the IKK complex and thus serves as a negative regulator of inducible IKK activity. Upon T cell stimulation, A20 is rapidly removed and paracaspase activity of Malt1 has been suggested to cleave A20. Using antagonistic peptides or reconstitution of Malt1(-/-) T cells, we show that Malt1 paracaspase activity is required for A20 cleavage and optimal IL-2 production, but dispensable for initial IKK/NF-kappaB signaling in CD4(+) T cells. However, proteasomal inhibition impairs A20 degradation and impedes TCR/CD28-induced IKK activation. Taken together, A20 functions as a Malt1 deubiquitinating enzyme and proteasomal degradation and de novo synthesis of A20 contributes to balance TCR/CD28-induced IKK/NF-kappaB signaling.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom