z-logo
open-access-imgOpen Access
An Atopy-Associated Polymorphism in the Ectodomain of the IL-4Rα Chain (V50) Regulates the Persistence of STAT6 Phosphorylation
Author(s) -
Andrew Ford,
Nicola Heller,
Linda M. Stephenson,
Mark Boothby,
Achsah Keegan
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0803266
Subject(s) - phosphorylation , tyrosine phosphorylation , stat6 , biology , tyrosine , transfection , interleukin 4 , microbiology and biotechnology , cytokine , cell culture , immunology , biochemistry , genetics
Several commonly occurring polymorphisms in the IL-4R(alpha) have been associated with atopy in humans; the Q576R and the S503P polymorphisms reside in the cytoplasmic domain, whereas the I50 to V50 polymorphism resides in the extracellular domain of the IL-4R(alpha). The effects of these polymorphisms on signaling remain controversial. To determine the effect of the polymorphisms on IL-4 signaling in human cells, we stably transfected the human monocytic cell line U937 with murine IL-4R(alpha) cDNA bearing the I or V at position 50 and the P503/R576 double mutant. Each form of the murine IL-4R(alpha) mediated tyrosine phosphorylation of STAT6 in response to murine IL-4 treatment similar to the induction of tyrosine phosphorylation by human IL-4 signaling through the endogenous human IL-4R(alpha). After IL-4 removal, tyrosine-phosphorylated STAT6 rapidly decayed in cells expressing I50 or P503R576 murine IL-4Ralpha. In contrast, STAT6 remained significantly phosphorylated for several hours after murine IL-4 withdrawal in cells expressing the V50 polymorphism. This persistence in tyrosine-phosphorylated STAT6 was associated with persistence in CIS mRNA expression. Blocking IL-4 signaling during the decay phase using the JAK inhibitor AG490 or the anti-IL-4R(alpha) Ab M1 abrogated the persistence of phosphorylated STAT6 observed in the V50-IL-4R(alpha)-expressing cells. These results indicate that the V50 polymorphism promotes sustained STAT6 phosphorylation and that this process is mediated by continued engagement of IL-4R(alpha), suggesting enhanced responses of V50 IL-4R when IL-4 is limiting.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom