z-logo
open-access-imgOpen Access
Inducible MHC Class II Expression by Mast Cells Supports Effector and Regulatory T Cell Activation
Author(s) -
Taku Kambayashi,
Eric J. Allenspach,
John T. Chang,
Tao Zou,
Jonathan E. Shoag,
Steven L. Reiner,
Andrew J. Caton,
Gary A. Koretzky
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0803180
Subject(s) - mhc class ii , microbiology and biotechnology , mhc class i , t cell , biology , immunology , antigen presentation , cytotoxic t cell , major histocompatibility complex , immune system , in vitro , genetics
In addition to their well-established role as regulators of allergic response, recent evidence supports a role for mast cells in influencing the outcome of physiologic and pathologic T cell responses. One mechanism by which mast cells (MCs) influence T cell function is indirectly through secretion of various cytokines. It remains unclear, however, whether MCs can directly activate T cells through Ag presentation, as the expression of MHC class II by MCs has been controversial. In this report, we demonstrate that in vitro stimulation of mouse MCs with LPS and IFN-gamma induces the expression of MHC class II and costimulatory molecules. Although freshly isolated peritoneal MCs do not express MHC class II, an in vivo inflammatory stimulus increases the number of MHC class II-positive MCs in situ. Expression of MHC class II granted MCs the ability to process and present Ags directly to T cells with preferential expansion of Ag-specific regulatory T cells over naive T cells. These data support the notion that, in the appropriate setting, MCs may regulate T cell responses through the direct presentation of Ag.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom