z-logo
open-access-imgOpen Access
The Essential Role of LAT in Thymocyte Development during Transition from the Double-Positive to Single-Positive Stage
Author(s) -
Shudan Shen,
Minghua Zhu,
Jasmine Lau,
Mariana Chuck,
Weiguo Zhang
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0803170
Subject(s) - double negative , thymocyte , t cell receptor , biology , microbiology and biotechnology , effector , t cell , immunology , immune system
The linker for activation of T cells (LAT) is an adaptor protein that couples TCR engagement to downstream signaling cascades. LAT is important in early thymocyte development as LAT-deficient mice have a complete block at the double-negative (DN) 3 stage. To study the role of LAT beyond the DN3 stage, we generated mice in which the lat gene could be deleted by the Cre recombinase. Analysis of these mice showed that deletion of LAT after the DN3 stage allowed thymocytes to develop past the DN3 to DN4 checkpoint and to generate double-positive thymocytes. However, LAT-deficient DP thymocytes were severely defective in responding to stimulation via the TCR and failed to differentiate into single-positive thymocytes efficiently. Consequently, few LAT-deficient mature T cells could be found in the periphery. These T cells had undergone extensive homeostatic proliferation and expressed low levels of the TCR on their surface. Collectively, our data indicate that in addition to its role in pre-TCR signaling, LAT also plays an essential role in thymocyte development during transition from the double-positive to single-positive stage.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom