z-logo
open-access-imgOpen Access
P2X7 Receptor-Stimulated Secretion of MHC Class II-Containing Exosomes Requires the ASC/NLRP3 Inflammasome but Is Independent of Caspase-1
Author(s) -
Yan Qu,
Lakshmi Ramachandra,
Susanne Mohr,
Luigi Franchi,
Clifford V. Harding,
Gabriel Núñez,
George Dubyak
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0802968
Subject(s) - inflammasome , microbiology and biotechnology , microvesicles , mhc class ii , mhc class i , nalp3 , secretion , biology , chemistry , receptor , major histocompatibility complex , biochemistry , immune system , immunology , microrna , gene
We recently reported that P2X7 receptor (P2X7R)-induced activation of caspase-1 inflammasomes is accompanied by release of MHC class II (MHC-II) protein into extracellular compartments during brief stimulation of murine macrophages with ATP. Here we demonstrate that MHC-II containing membranes released from macrophages or dendritic cells (DCs) in response to P2X7R stimulation comprise two pools of vesicles with distinct biogenesis: one pool comprises 100- to 600-nm microvesicles derived from direct budding of the plasma membrane, while the second pool is composed of 50- to 80-nm exosomes released from multivesicular bodies. ATP-stimulated release of MHC-II in these membrane fractions is observed within 15 min and results in the export of approximately 15% of the total MHC-II pool within 90 min. ATP did not stimulate MHC-II release in macrophages from P2X7R knockout mice. The inflammasome regulatory proteins, ASC (apoptosis-associated speck-like protein containing a caspase-recruitment domain) and NLRP3 (NLR family, pyrin domain containing 3), which are essential for caspase-1 activation, were also required for the P2X7R-regulated release of the exosome but not the microvesicle MHC-II pool. Treatment of bone marrow-derived macrophages with YVAD-cmk, a peptide inhibitor of caspase-1, also abrogated P2X7R-dependent MHC-II secretion. Surprisingly, however, MHC-II release in response to ATP was intact in caspase-1(-/-) macrophages. The inhibitory actions of YVAD-cmk were mimicked by the pan-caspase inhibitor zVAD-fmk and the serine protease inhibitor TPCK, but not the caspase-3 inhibitor DEVD-cho. These data suggest that the ASC/NLRP3 inflammasome complexes assembled in response to P2X7R activation involve protease effector(s) in addition to caspase-1, and that these proteases may play important roles in regulating the membrane trafficking pathways that control biogenesis and release of MHC-II-containing exosomes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom