z-logo
open-access-imgOpen Access
CD1d Activation and Blockade: A New Antitumor Strategy
Author(s) -
Michele W.L. Teng,
Simon Yue,
Janelle Sharkey,
Mark A. Exley,
Mark J. Smyth
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0802964
Subject(s) - cd1d , natural killer t cell , biology , cd8 , cancer research , cytotoxic t cell , immunotherapy , microbiology and biotechnology , immunology , antigen , immune system , in vitro , biochemistry
CD1d is expressed on APCs and presents glycolipids to CD1d-restricted NKT cells. For the first time, we demonstrate the ability of anti-CD1d mAbs to inhibit the growth of different CD1d-negative experimental carcinomas in mice. Anti-CD1d mAbs systemically activated CD1d(+) APC, as measured by production of IFN-gamma and IL-12. Tumor growth inhibition was found to be completely dependent on IFN-gamma and IL-12 and variably dependent on CD8(+) T cells and NK cells, depending upon the tumor model examined. Anti-CD1d mAb induced greater CD8(+) T cell-dependent tumor suppression where regulatory CD1d-restricted type II NKT cells have been implicated, and were less effective in a NK cell-dependent manner against tumors where T regulatory cells were immunosuppressive. The ability of anti-CD1d mAbs to coincidently activate CD1d(+) APCs to release IL-12 and inhibit CD1d-restricted type II NKT cells makes CD1d an exciting new target for immunotherapy of cancer based on tumor immunoregulation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom